【Fortran90】求解定解线性方程组的直接法——矩阵变换
本帖最后由 流星雨 于 2020-10-10 17:18 编辑感谢https://www.0xaa55.com/forum.php?mod=viewthread&tid=26113&fromuid=6285 (出处: 技术宅的结界)]【Python】高斯消元法与LU分解及作者watermelon在学习过程中提供的重要帮助!
参考数目:
【1】《数值分析》(李乃成、梅立泉编著,科学出版社,ISBN:978-7-03-032192-3)
【2】《Fortran95/2003科学计算与工程》(宋叶志、茅永兴、赵秀杰编著,清华大学出版社,ISBN:978-7-302-24706-7)
主要内容:
项目的主要功能为求解“定解、显参数的线性方程组”,解法为直接解法(矩阵变换),共包含5种算法:
1、列主元高斯法:参见【1】P20-22;【2】P12-16
2、LU分解法:参见【1】P25-39;【2】P24-28
3、THOMAS追赶法(只适用于求解三对角阵):参见【1】P35-37;【2】P28-32
4、Gwens QR分解法:参见【1】P52-56;
5、Householder QR分解法:参见【1】P56-65;【2】P106-112
采用模块化编程,共包含两个程序:Make Cards.exe(生成一张空白的输入卡);SOLVERS FOR LINEAR EQUATIONS.exe(计算向量x,输出在fout.txt中)
源码力求简明易懂,没有复杂的编程技巧,方便初学者交流学习。作者才疏学浅,有不足之处恳请指教。
附上参考书【1】给出的使用建议:
1、列主元高斯消去法具有较好的数值稳定性,算法组织比较容易,对于阶数不高(n<=30)的线性方程组是一个常用的求解方法;
2、由高斯消去法的矩阵形式导出矩阵的A=LU分解,用LU分解解方程组等价于高斯消去法.为了减少计算量,矩阵A=LU分解特别适宜于求解系数矩阵相同,但右端项不同的多个方程组。(Ax=b→LUx=b→Ly=b,其中L为下三角阵。当b不同时,可先直接解出y,再解Ux=y);
3、求解三对角方程组的追赶法则是矩阵A=LU分解在解三对角方程组中的应用,它具有计算量小、方法简单、计算过程稳定等优点;
4、求解病态方程组最好事先采取预处理措施,或采用高精度计算,或用矩阵的QR分解求解。由Gwens变换和Householder变换分别导出的矩阵的QR分解常用于求解病态方程组,亦可求解超定方程组、求矩阵特征值等数值代数中的许多其他问题(暂不讨论).
源码快查:
1、列主元高斯法:
!**************************************************************************************************
! File name: SOVER GAUSSIAN ITER OF COLUMN.f90
! Author: Li Xinyu
! Version: 1.0
! Date: 2020/9/29
! Description: This is the sover of GAUSSIAN ITER OF COLUMN
! Others: None
! Function List: None
! Sunroutine List: Gausssolve
! Module list:UPTRI
! History:
! 1. Date: 2020/9/29
! Author: Li Xinyu
! Modification: Began developing the program
!**************************************************************************************************
MODULE GAUSSIAN_COLUMN
USE UPTRI
IMPLICIT NONE
!INTEGER,PARAMETER:: DBL = 8
CONTAINS
subroutine Gausssolve(A,b,x,N)
!*************************************************
! Version:1.0
! Date: 2020/9/29
! Coded by: Li Xinyu
! Calls: UPTRIsover(Aup,bup,x,N)
! Called By: readtxt(A,b,x,N)
! Input: A,b,N
! Output:
! Return:x
! Others:
!*************************************************
implicit none
integer :: i, k !循环变量,i行号,k列号
integer :: N !矩阵行/列数
integer :: idmax !主元素编号
real(kind = 8) :: elmax !主元素绝对值
real(kind = 8) :: temp !暂存同列临行的系数比
real(kind = 8) :: A(N,N), b(N), x(N) !定义矩阵A,向量b和待求解向量x
real(kind = 8) :: Aup(N,N), bup(N)
real(kind = 8) :: Ab(N,N+1) !增广矩阵
real(kind = 8) :: vtemp1(N+1), vtemp2(N+1) !用作换行的中间数组
Ab(1:N,1:N) = A !对增广Ab的系数区域赋值为A
Ab(:,N+1) = b !对增广Ab的尾数区域赋值为b
!===============================================================
!列主元消去法核心
do k=1, N-1 !k作为列编号,外循环扫描行
elmax = dabs(Ab(k,k)) !记录数值
idmax = k !记录行位置
do i=k+1, N !先扫描列,i为行号
if (dabs(Ab(i,k)) > elmax) then
elmax = dabs(Ab(i,k)) !获取更大的值
idmax = i
end if
end do !至此已完成了最大元素的查找,下面交换行顺序
vtemp1 = Ab(k,:)
vtemp2 = Ab(idmax ,:)
Ab(k,:) = vtemp2
Ab(idmax ,:) = vtemp1
!开始消元
do i = k+1, N
temp = Ab(i,k)/Ab(k,k)
Ab(i,:) = Ab(i,:) - temp*Ab(k,:) !k+1行根据k行消元
end do
end do
!至此,Ab已转换为上三角阵
!===============================================================
Aup(:,:) = Ab(1:N,1:N) !拆分增广阵为系数阵,储存
bup(:) = Ab(:,N+1) !拆分增广阵为尾数阵,储存
!write (*,*) "新系数矩阵"
!write (*,*) Aup
!write (*,*) "新尾数矩阵"
!write (*,*) bup
call UPTRIsover(Aup,bup,x,N) !调用回带函数
end subroutine Gausssolve
END MODULE GAUSSIAN_COLUMN
2、LU分解法:
!**************************************************************************************************
! File name: SOVER LU.f90
! Author: Li Xinyu
! Version: 1.0
! Date: 2020/9/30
! Description: This is the sover of LU
! Others: None
! Function List: None
! Sunroutine List: LUsolve
! Module list:UPTRI
! History:
! 1. Date: 2020/9/30
! Author: Li Xinyu
! Modification: Began developing the program
!**************************************************************************************************
MODULE LU
USE UPTRI
IMPLICIT NONE
CONTAINS
subroutine LUsolve(A,b,x,N)
!*************************************************
! Version:1.0
! Date: 2020/9/30
! Coded by: Li Xinyu
! Calls: UPTRIsover(R,y,x,N)
! Called By: SOLVERSFORLINEAREQUATIONS
! Input: A,b,N
! Output:
! Return:x
! Others:
!*************************************************
implicit none
integer :: i, j, k !循环变量,i行号,k列号
integer :: N !矩阵行/列数
real(kind = 8) :: L_U(N,N), A(N,N), b(N), x(N), L1(N,N), U1(N,N),y(N) !定义L_U(N,N)、A、分块下上三角阵L_(N,N)、 _U(N,N),向量b和待求解向量x,中间向量y Ly=b
real(kind = 8) :: sumlu = 0 !定义求和变量
L_U = 1 !赋初值,主要是为了把LII=1
L_U(1,:) = A(1,:) !填满U矩阵第一行
L_U(:,1) = A(:,1)/L_U(1,1) !填满I矩阵第一列
L_U(1,1) = A(1,1) !这里注意,由于是紧凑型,U1会被L1替代,故需要回调U1
do i=2, N-1
sumlu = 0 !归零
do k=1, i-1
sumlu = sumlu + L_U(i,k)*L_U(k,i) !求LiUi之积的和
end do
L_U(i,i) = A(i,i) - sumlu !求LU对角UII
do j=i+1, N
sumlu = 0 !归零
do k=1, i-1
sumlu = sumlu + L_U(i,k)*L_U(k,j) !求右侧UIJ
end do
L_U(i,j) = A(i,j) - sumlu
sumlu = 0 !归零
do k=1, i-1
sumlu = sumlu + L_U(j,k)*L_U(k,i) !求下侧LJI
end do
L_U(j,i) = (A(j,i) - sumlu)/L_U(i,i)
end do
end do
sumlu = 0 !归零
do k=1, N-1
sumlu = sumlu + L_U(N,k)*L_U(k,N)
end do
L_U(N,N) = A(N,N) - sumlu
L1(N,N) = 0 !矩阵分割
do i=1, N
L1(i,i) = 1
U1(i,i) = L_U(i,i)
do j=i+1, N
L1(j,i) = L_U(j,i)
U1(i,j) = L_U(i,j)
end do
end do
!LUx=b
!Ly=b
!Ux=y
y(1) = b(1)/L1(1,1) !先算第一行
do k=2, N !下三角阵,正循环
y(k) = b(k)
do i=1, k-1
y(k) = y(k) - L1(k,i)*y(i)
end do
y(k) = y(k)/L1(k,k)
end do !至此,Ux=y对应Aupx=bup
call UPTRIsover(U1,y,x,N) !调用回带函数
end subroutine LUsolve
END MODULE LU
3、THOMAS追赶法(只适用于求解三对角阵):
!**************************************************************************************************
! File name: SOVER THOMAS.f90
! Author: Li Xinyu
! Version: 1.0
! Date: 2020/9/29
! Description: This is the sover of THOMAS
! Others: None
! Function List: None
! Sunroutine List: Thomassolve
! Module list: UPTRI
! History:
! 1. Date: 2020/9/29
! Author: Li Xinyu
! Modification: Began developing the program
!**************************************************************************************************
MODULE THOMAS
IMPLICIT NONE
CONTAINS
subroutine Thomassolve(A,f,x,N)
!*************************************************
! Version:1.0
! Date: 2020/10/1
! Coded by: Li Xinyu
! Calls:
! Called By: SOLVERSFORLINEAREQUATIONS
! Input: A,b,N
! Output:
! Return:x
! Others:
!*************************************************
implicit none
integer :: i, N !循环变量,i行号,k列号
real(kind = 8) :: A(N,N), f(N), x(N), y(N) !定义矩阵A,向量f和待求解向量x,中间向量y
real(kind = 8) :: l(2:N), u(N)!向量l(f上分解),u(f下分解)
real(kind = 8) :: c(1:N-1), b(N), e(2:N) !定义向量c(记录上对角线元素),向量b(记录对角线元素),向量e(记录对角线元素)
!矩阵对角线赋值给向量e,b,c
do i=1, N
b(i) = A(i,i)
end do
do i=1, N-1
c(i) = A(i,i+1)
end do
do i=2, N
e(i) = A(i,i-1)
end do
!快速LU分解
u(1) = b(1)
do i=2, N
l(i) = e(i)/u(i-1)
u(i) = b(i)-l(i)*c(i-1)
end do
!快速回代求y
y(1) = f(1)
do i=2, N
y(i) = f(i)-l(i)*y(i-1)
end do
!快速回代求x
x(n) = y(n)/u(n)
do i=N-1, 1, -1
x(i) = (y(i)-c(i)*x(i+1))/u(i)
end do
end subroutine Thomassolve
END MODULE THOMAS
4、Gwens&Householdersolve QR分解法:
!**************************************************************************************************
! File name: SOVER LU.f90
! Author: Li Xinyu
! Version: 1.0
! Date: 2020/10/9
! Description: This is the sover of QR
! Others: None
! Function List: None
! Sunroutine List: Gwenssolve,Householdersolve
! Module list:
! History:
! 1. Date: 2020/10/9
! Author: Li Xinyu
! Modification: Began developing the program
!**************************************************************************************************
MODULE QR
USE UPTRI
IMPLICIT NONE
CONTAINS
subroutine Gwenssolve(A,b,x,N)
!*************************************************
! Version:1.0
! Date: 2020/10/10
! Coded by: Li Xinyu
! Calls: UPTRIsover(R,y,x,N)
! Called By: SOLVERSFORLINEAREQUATIONS
! Input: A,b,N
! Output:
! Return:x
! Others:
!*************************************************
implicit none
integer :: i, j, k !循环变量,i行号,j列号
integer :: N !矩阵列/行数
real(kind = 8) :: b(N), x(N), y(N) !向量b,待求解向量x,中间向量y
real(kind = 8) :: A(N,N), PA(N,N,N),PP(N,N,N),R(N,N),Q(N,N) !声明输入矩阵A,PA中间过程矩阵,PP中间过程矩阵,R矩阵,Q矩阵
real(kind = 8) :: P(N,N,N) !吉文斯矩阵空间P
!---------------------------------------------------------------------------
P = 0.0 !P初始化
PP = 0.0 !Q初始化
!---------------------------------------------------------------------------
do j=1, N
do i=1, N
P(j,i,i) = 1.0 !吉文斯矩阵空间P分配初值,其中第一个i为P的代号,第二三个为横纵坐标
PP(j,i,i) = 1.0 !构造单位阵PP
end do
end do
!---------------------------------------------------------------------------
PA(1,:,:) = A(:,:) !吉文斯矩阵空间P分配初值,其中第一个i为P的代号,第二三个为横纵坐标\
do j=1, N-1
do i=j+1, N !确定列后每行寻找非0元素并构造吉文斯矩阵P
if (abs(PA(j,i,j)) >= 1.0E-5) then !判断非零元素
P(j,:,:) = P(N,:,:) !以最后一个单位阵为基准重新构造单位阵PP
!构造吉文斯矩阵P,这里要注意正负号开根分类讨论。须满足“PijAjj + PiiAij = 0”和“Pij^2 + Pjj^2 = 1”。
if (PA(j,i,j)*PA(j,j,j) > 0) then !Aij和Ajj同号则pij<0
P(j,i,j) = -SQRT(1/(1+(PA(j,j,j)/PA(j,i,j))**2)) !<0
P(j,j,i) = -P(j,i,j) !>0
P(j,j,j) = SQRT(1-P(j,i,j)**2) !>0
P(j,i,i) = P(j,j,j) !>0
else if (PA(j,i,j)*PA(j,j,j) <= 0) then !Aij和Ajj异号则pij>0
P(j,i,j) = SQRT(1/(1+(PA(j,j,j)/PA(j,i,j))**2)) !>0
P(j,j,i) = -P(j,i,j) !<0
P(j,j,j) = SQRT(1-P(j,i,j)**2) !>0
P(j,i,i) = P(j,j,j) !>0
end if
PA(j,:,:) = matmul(P(j,:,:),PA(j,:,:)) !计算矩阵乘法PA
PP(j,:,:) = matmul(P(j,:,:),PP(j,:,:)) !计算累乘P
PA(j+1,:,:) = PA(j,:,:) !每替换一次,就要更新下一层PA
PP(j+1,:,:) = PP(j,:,:) !每替换一次,就要更新下一层PP
end if
end do
end do
R = PA(j,:,:) !提取矩阵R
Q = transpose(PP(j,:,:)) !提取转置Q
y = matmul(transpose(Q),b) !求解向量y y=Qtb,Rx=y
call UPTRIsover(R,y,x,N) !调用回带函数
end subroutine Gwenssolve
subroutine Householdersolve(A,b,x,N)!镜像变换,H = I - 2 uut/(||u||2)^2
!*************************************************
! Version:1.0
! Date: 2020/9/30
! Coded by: Li Xinyu
! Calls: UPTRIsover(R,y,x,N)
! Called By: SOLVERSFORLINEAREQUATIONS
! Input: A,b,N
! Output:
! Return:x
! Others:
!*************************************************
implicit none
integer :: i, j, k !循环变量,i行号,j列号/批次,k为每批内的列号
integer :: N !矩阵行/列数
real(kind = 8) :: b(N), x(N), y(N), u(N) !向量b,待求解向量x,中间向量y,u
real(kind = 8) :: A(N,N), A1(N,N), A2(N,N), R(N,N), Q(N,N) !声明输入矩阵A,A1中间过程矩阵,A2中间过程矩阵,R矩阵,Q矩阵
real(kind = 8) :: H0(N,N), H1(N,N), H2(N,N) !声明大矩阵H0,小矩阵H1
real(kind = 8) :: s, du !声明sigma记录二范数,du取u长度平方
!---------------------------------------------------------------------------
A1 = A !中间过程,保存HA
!---------------------------------------------------------------------------
H1 = 0.0 !小矩阵单位化处理
do i=1, N
H1(i,i) = 1.0
end do
!---------------------------------------------------------------------------
do j=1, N
!---------------------------------------------------------------------------
H0 = 0.0 !大矩阵每次都要重置
do i=1, N !大矩阵单位化处理
H0(i,i) = 1.0
end do
!---------------------------------------------------------------------------
s = 0.0 !s每次都要重置
do i=j, N
s = s + A1(i,j)**2
end do
s = dsqrt(s) !计算向量范数
!---------------------------------------------------------------------------
u = 0.0 !每一列的u都要初始化
if (A1(j,j)>=0) then !取得尽可能大的u的范数
u(j) = A1(j,j) + s
else
u(j) = A1(j,j) - s
end if
!---------------------------------------------------------------------------
do i=j+1, N !取u的值用来取长度平方
u(i) = A1(i,j)
end do
du = 0.0 !每一列的du都要初始化
do i=j, N
du = du + u(i)**2
end do
!---------------------------------------------------------------------------
do i=j, N !镜像变换,H = I - 2 uut/(||u||2)^2
do k=j, N
H0(i,k) = -2.0*u(i)*u(k)/du
if (i==k) then
H0(i,k) = 1.0 + H0(i,k) !直接加常数1
end if
end do
end do
!---------------------------------------------------------------------------
A2 = matmul(H0,A1)
A1 = A2 !计算HA累乘
H1 = matmul(H1,H0) !计算HH累乘
end do
!---------------------------------------------------------------------------
R = A1 !提取矩阵R
Q = H1 !提取转置Q
y = matmul(transpose(Q),b) !求解向量y y=Qtb,Rx=y
call UPTRIsover(R,y,x,N) !启动上三角回代
end subroutine Householdersolve
END MODULE QR
5、上三角回代:
!**************************************************************************************************
! File name: UPTRI.f90
! Author: Li Xinyu, Zhou Xingguang
! Version: 1.0
! Date: 2020/9/29
! Description: To calculate x in up triangle
! Others: None
! Function List: None
! Sunroutine List: Gausssolve
! Module list:None
! History:
! 1. Date: 2020/9/29
! Author: Li Xinyu
! Modification: Began developing the program
!**************************************************************************************************
MODULE UPTRI
IMPLICIT NONE
CONTAINS
subroutine UPTRIsover(A,b,x,N)
!*************************************************
! Version:1.0
! Date: 2020/9/29
! Coded by: Li Xinyu
! Calls: None
! Called By: Gausssolve(A,b,x,N),LUsolve(A,b,x,N)
! Input: A,b,N
! Output: x
! Return: x
! Others:
!*************************************************
implicit none
integer i,j,N !i行号,j列号,N矩阵行、列数
real(kind = 8) :: A(N,N), b(N), x(N) !定义矩阵A,向量b和待求解向量x
!下面开始回代
x(N) = b(N)/A(N,N) !先算最后一行
do i=N-1, 1, -1 !i做减法反循环
x(i) = b(i)
do j=i+1, N !一列列的减完
x(i) = x(i) - x(j)*A(i,j)
end do
x(i) = x(i)/A(i,i) !最后除以当前行x(i)的系数
end do
end subroutine UPTRIsover
END MODULE UPTRI
6、输入模块:
!**************************************************************************************************
! File name: INPUT.f90
! Author:Li Xinyu
! Version:1.0
! Date:2020/9/29
! Description: This is the module of reading equations from .txt and transfer them to solvers
! Others:
! Function List:
! History:
! 1. Date: 2020/9/29
! Author: Li Xinyu
! Modification: Began developing the program
! 2. Date: 2020/9/30
! Author: Li Xinyu
! Modification: Change the rule of reading to read new cards.
!**************************************************************************************************
MODULE INPUT
IMPLICIT NONE
INTEGER,PARAMETER :: fileID = 10
CONTAINS
subroutine readtxt(A,b,x,N,methods)
!*************************************************
! Version:1.0
! Date: 2020/10/9
! Coded by: Li Xinyu
! Calls:
! Called By: SOLVERSFORLINEAREQUATIONS(main program)
! Input: A,b,x,N,methods
! Output: A,b,x,N,methods
! Return:
! Others:
!*************************************************
integer i,j,N,methods !读取用循环变量
!real(kind = 8) Na(1)
real(kind = 8),allocatable :: A(:,:), b(:), x(:) !定义矩阵A,向量b和待求解向量x
character test !测试用字符
open (unit = fileID,file = 'fin.txt')
!---------------------------------------------------------------------------
read (fileID,*) test !读取#用作判定,读取列数
if (test == '#') then
read (fileID,'(1I3)') N
write (*,*) '矩阵行列数:'
write (*,*) N
else
write (*,*) '输入格式错误:'
end if
!---------------------------------------------------------------------------
allocate(A(N,N)) !分配空间
allocate(b(N))
allocate(x(N))
!---------------------------------------------------------------------------
write (*,*) !空一行
read (fileID,*) test!跳至下一行
if (test == '#') then
read (fileID,*) ((A(i,j),j=1,N),i=1,N) !读取A矩阵。这里A是正常写法,故按照先读j再读i的顺序(先控制行不变,读列),与内存排布方式相反。如果为了加快速度,写矩阵的时候就要转置写法
write (*,*) "系数矩阵"
write (*,*) A
else
write (*,*) '输入格式错误:'
end if
!---------------------------------------------------------------------------
write (*,*) !空一行
read (fileID,*) test!跳至下一行
if (test == '#') then
read (fileID,*) b !读取b转置尾数向量
write (*,*) "尾数矩阵:"
do i=1,N
write (*,'(D15.3)') b(i)
end do
else
write (*,*) '输入格式错误:'
end if
!---------------------------------------------------------------------------
write (*,*) !空一行
read (fileID,*) test!跳至下一行
if (test == '#') then
read (fileID,*) methods !读取解法
write (*,*) "解法:"
if (methods == 1) then !选择解法,1=列主元高斯
write (*,*) "列主元高斯"
else if (methods == 2) then !选择解法,2=LU
write (*,*) "LU"
else if (methods == 3) then !选择解法,3=THOMAS
write (*,*) "THOMAS"
else if (methods == 4) then !选择解法,4=Gwens QR
write (*,*) "Gwens QR"
else if (methods == 5) then !选择解法,5=Householder QR
write (*,*) "Householder QR"
end if
write (*,*) !空一行
else
write (*,*) '输入格式错误:'
end if
!---------------------------------------------------------------------------
close (fileID) !及时关闭fin.txt
!return
!call Gausssolve(A,b,x,N)!调用回带函数
end subroutine readtxt
END MODULE INPUT
7、求解程序
!**************************************************************************************************
! File name: SOLVERS FOR LINEAR EQUATIONS.f90
! Author:Li Xinyu
! Version:1.0
! Date:2020/9/29
! Description: !!The main program!! To read equations, choose solvers, solve, and output results
! Others:This program is also an interface to solutions for linear equations as much as possible
! Function List: None
! Sunroutine List: CHOOSE SOVERS
! Module list: None
! INPUT('INPUT.f90'). Reading equations and transfer them to solvers.
! GAUSSIAN COLUMN('SOVER GAUSSIAN ITER OF COLUMN.f90'). Sover of GAUSSIAN ITER OF COLUMN.
! LU(SOVER LU.f90). Sover of LU
! THOMAS(SOVER THOMAS.f90) Sover of THOMAS
! UPTRI(UPTRI.f90). To calculate x in up triangle
! History:
! 1. Date: 2020/9/29
! Author: Li Xinyu
! Modification: Began developing the program
! 2. Date: 2020/9/30
! Author: Li Xinyu
! Modification: Developed the MCARDS module to make readable cards for users. Developed the GAUSSIAN COLUMN module and LU module
! 3. Date: 2020/10/1
! Author: Li Xinyu
! Modification: Developed the THOMAS module
! 4. Date: 2020/10/10
! Author: Li Xinyu
! Modification: Developed the QR module
!**************************************************************************************************
program SOLVERSFORLINEAREQUATIONS
use INPUT !读卡模块
use GAUSSIAN_COLUMN !列主元高斯迭代法模块
use LU !LU分解模块
use THOMAS !THOMAS追赶法模块
use QR !QR分解模块
use UPTRI !回代模块
implicit none
INTEGER,PARAMETER:: fileIDout = 20
INTEGER :: N = 1 !列数初值
INTEGER :: M = 1 !行数初值
INTEGER :: methods
!---------------------------------------------------------------------------
real(kind = 8),allocatable :: A(:,:), b(:), x(:) !定义矩阵A,向量b和待求解向量x
call readtxt(A,b,x,N,methods) !调用读取函数
!---------------------------------------------------------------------------
open (unit = fileIDout,file = 'fout.txt') !输出
write (fileIDout,*) "SOLVERS FOR LINEAR EQUATIONS--Matrix Transformation"
!---------------------------------------------------------------------------
if (methods == 1) then !选择解法,1=列主元高斯
call Gausssolve(A,b,x,N)!启用列主元高斯法,自动启动回代计算
write (fileIDout,*) "列主元高斯法"
else if (methods == 2) then !选择解法,2=LU
call LUsolve(A,b,x,N) !启用LU法,自动启动回代计算
write (fileIDout,*) "LU法"
else if (methods == 3) then !选择解法,3=THOMAS
call Thomassolve(A,b,x,N) !启用THOMAS法,自动启动回代计算
write (fileIDout,*) "THOMAS法"
else if (methods == 4) then !选择解法,4=Gwens QR
call Gwenssolve(A,b,x,N) !启用Gwens QR法,自动启动回代计算
write (fileIDout,*) "Gwens QR法"
else if (methods == 5) then !选择解法,5=Householder QR
call Gwenssolve(A,b,x,N) !启用Householder QR法,自动启动回代计算
write (fileIDout,*) "Householder QR法"
end if
!---------------------------------------------------------------------------
!下面开始输出
write (*,*) "x的解为:"
write (*,'(D15.3)') x
write (fileIDout,'(D15.3)') x
close (fileIDout) !及时关闭fin.txt
!---------------------------------------------------------------------------
deallocate(A)
deallocate(b)
deallocate(x)
!---------------------------------------------------------------------------
pause
!---------------------------------------------------------------------------
end program SOLVERSFORLINEAREQUATIONS
8、制卡程序
!**************************************************************************************************
! File name: SOLVERS FOR LINEAR EQUATIONS.f90
! Author:Li Xinyu
! Version:1.0
! Date:2020/9/30
! Description: !!The main program!! To make cards and solve methods
! Function List: None
! Sunroutine List: None
! Module list: None
! History:
! 1. Date: 2020/10/10
! Author: Li Xinyu
! Modification: Developed the program to make readable cards for users
!**************************************************************************************************
PROGRAM MAKETXT
IMPLICIT NONE
INTEGER,PARAMETER:: fileIDmake = 11
open (unit = fileIDmake,file = 'fin.txt') !打开文件
write (fileIDmake,*) "#请在下一行输入系数矩阵行列数:"
write (fileIDmake,*) "#请在下一行输入系数矩阵,每行元素空格隔开(请勿转置):"
write (fileIDmake,*) "#请在下一行输入尾数转置向量,每行元素空格隔开:"
write (fileIDmake,*) "#请在下一行选择解法,1=列主元高斯;2=LU;3=THOMAS;4=Gwens QR;5=Householder QR"
close (fileIDmake)
end PROGRAM
宇哥强啊!如果前面部分(背景介绍,QR分解作用等等)能写的更完善些就更好了!
模块化的编程思维还是很不错的。
页:
[1]