【C】对矩阵做广义笛卡尔积运算
本帖最后由 usr 于 2022-5-18 21:30 编辑对关系做笛卡尔积是DBMS中一个比较重要的操作。如果有两个关系A和B,A的列数是m,B的列数是n;
A的行数是x,B的行数是y。则,A*B的列数是m+n,行数是x*y。因为关系可以使用矩阵表示。
以下的代码显示了对两个关系矩阵生成笛卡尔积的过程。注意本程序需要StoneValley库的支持。
#include <stdio.h>
#include <string.h>
#include "./StoneValley/src/svstring.h"
P_MATRIX CreateCartesianProduct(P_MATRIX pma, P_MATRIX pmb, size_t size)
{
size_t m, n;
P_MATRIX pmr = strCreateMatrix(m = pma->ln * pmb->ln, n = pma->col + pma->col, size);
if (NULL != pmr)
{
REGISTER size_t i, x, y;
for (i = 0, x = 0, y = 0; i < m; ++i)
{
/* Fill tuples of pma to pmr. */
memcpy(strGetValueMatrix(NULL, pmr, i, 0, size), strGetValueMatrix(NULL, pma, x, 0, size), size * pma->col);
/* Fill tuples of pmb to pmr. */
memcpy(strGetValueMatrix(NULL, pmr, i, pma->col, size), strGetValueMatrix(NULL, pmb, y, 0, size), size * pmb->col);
if (0 == (i + 1) % pmb->ln)
++x;
if (++y == pmb->ln)
y = 0;
}
}
return pmr;
}
int cbftvs(void * pitem, size_t size)
{
static i = 1;
printf("%s ", (char *)pitem);
if (0 == i % size)
printf("\n");
++i;
return CBF_CONTINUE;
}
int main()
{
P_MATRIX pmb = NULL, pmc = NULL;
P_MATRIX pma = strCreateMatrix(3, 3, sizeof(char *));
strSetValueMatrix(pma, 0, 0, "a1", sizeof(char *));
strSetValueMatrix(pma, 0, 1, "b1", sizeof(char *));
strSetValueMatrix(pma, 0, 2, "c1", sizeof(char *));
strSetValueMatrix(pma, 1, 0, "a1", sizeof(char *));
strSetValueMatrix(pma, 1, 1, "b2", sizeof(char *));
strSetValueMatrix(pma, 1, 2, "c2", sizeof(char *));
strSetValueMatrix(pma, 2, 0, "a2", sizeof(char *));
strSetValueMatrix(pma, 2, 1, "b2", sizeof(char *));
strSetValueMatrix(pma, 2, 2, "c1", sizeof(char *));
pmb = strCreateMatrix(3, 3, sizeof(char *));
strSetValueMatrix(pmb, 0, 0, "a1", sizeof(char *));
strSetValueMatrix(pmb, 0, 1, "b2", sizeof(char *));
strSetValueMatrix(pmb, 0, 2, "c2", sizeof(char *));
strSetValueMatrix(pmb, 1, 0, "a1", sizeof(char *));
strSetValueMatrix(pmb, 1, 1, "b3", sizeof(char *));
strSetValueMatrix(pmb, 1, 2, "c2", sizeof(char *));
strSetValueMatrix(pmb, 2, 0, "a2", sizeof(char *));
strSetValueMatrix(pmb, 2, 1, "b2", sizeof(char *));
strSetValueMatrix(pmb, 2, 2, "c1", sizeof(char *));
pmc = CreateCartesianProduct(pma, pmb, sizeof(char *));
strTraverseArrayZ(&pma->arrz, sizeof(char *), cbftvs, 3, FALSE);
printf("\n");
strTraverseArrayZ(&pmb->arrz, sizeof(char *), cbftvs, 3, FALSE);
printf("\n");
strTraverseArrayZ(&pmc->arrz, sizeof(char *), cbftvs, 6, FALSE);
strDeleteMatrix(pma);
strDeleteMatrix(pmb);
strDeleteMatrix(pmc);
return 0;
}
运行结果如下:
a1 b1 c1
a1 b2 c2 (关系A)
a2 b2 c1
a1 b2 c2
a1 b3 c2 (关系B)
a2 b2 c1
a1 b1 c1 a1 b2 c2 (笛卡尔积)
a1 b1 c1 a1 b3 c2
a1 b1 c1 a2 b2 c1
a1 b2 c2 a1 b2 c2
a1 b2 c2 a1 b3 c2
a1 b2 c2 a2 b2 c1
a2 b2 c1 a1 b2 c2
a2 b2 c1 a1 b3 c2
a2 b2 c1 a2 b2 c1
对于对关系做传统的集合运算“交并差”笔者会在日后的帖子里补上。
欢迎在本贴讨论DBMS相关知识或者笛卡尔积的优化技巧。
页:
[1]